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Abstract--The resuspension of a settled layer of particles under viscous flow conditions has been attributed 
to shear-induced dispersion processes arising from the interaction between particles as a suspension is 
sheared. Previous studies were confined to steady-state measurements of the height of a resuspending layer 
as a function of applied shear stress. In this paper we present dynamic measurements of the response of 
a suspension of negatively buoyant non-colloidal spheres to a step change in the applied shear rate. The 
time-dependent variation in observed viscosity is used to estimate the shear-induced effective diffusivity 
within the plane of shear and the hindered settling factor in sheared suspensions at concentrations between 
20 and 50% by volume. 
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1. I N T R O D U C T I O N  

Resuspension is a process whereby a settled layer of  negatively buoyant  spheres, in the presence 
of  a shear flow, becomes entrained in the bulk fluid. While resuspension has typically been 
associated with high Reynolds number flows or turbulence (Thomas 1961), recently it has been 
shown to also occur at sufficiently low Reynolds numbers such that laminar conditions exist and 
inertial effects are insignificant (Gadala-Maria  1979; Leighton & Acrivos 1986). 

The resuspension of a settled layer of  particles under viscous flow conditions was indirectly 
observed by Gadala-Maria  (1979) while studying the rheological properties of  suspensions of  50 # m  
coal particles in viscous Newtonian fluids with a parallel-plate device. Gadala-Maria  found that 
after allowing the suspension to rest overnight, the coal particles, being negatively buoyant,  settled 
out. This resulted in a lower viscosity initially observed upon the application of shear. Sub- 
sequently, however, provided a sufficient level of  shear was applied to the suspension, the viscosity 
would gradually increase and attain the previous day's steady-state value. This increase was 
attributed to the resuspension of  the coal particles. 

In a more complete investigation of this phenomenon, Leighton & Acrivos (1986) showed that 
the viscous resuspension of  a settled layer of  particles could be described in terms of  a shear-induced 
diffusion process (Leighton & Acrivos 1987b), in which the diffusivity arose from the interaction 
between the particles as the suspension was sheared. Since the rate of  interparticle interactions is 
proportional  to the shear rate ~ and the resulting displacement across steamlines scales with the 
particle radius a, the effective diffusivity from interactions is proportional to ~a 2. This phenomenon 
has been observed in Couette viscometers and in Poiseuille flows (Leighton & Acrivos 1987b). It 
is quite different from the conventional Brownian diffusivity that arises from molecular motion and 
which, for spherical particles, is given by 

k T  
D B  = - -  [ l ]  

6rtpa 

for a dilute suspension. The ratio between these diffusivities scales as the Peclet number, 
Pe = ~)pa3/kT, which for typical viscous resuspension experiments is of  the order of  l0 s. This 
phenomenon is also distinct from inertial lift mechanisms (Segre & Silberberg 1962a, b; Ho & Leal 
1974), in which the dispersive forces are due to the inertia of  the suspending phase. Typical particle 
Reynolds numbers for viscous resuspension experiments are of  the order of  10 -4, for which inertial 
forces should be negligible. 
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It should be noted that the shear-induced effective diffusivity (or gradient diffusivity) is quite 
different from the shear-induced coefficient of self-diffusion. Shear-induced self-diffusion, investi- 
gated experimentally by Leighton & Acrivos (1987a) and Eckstein et al. (1977) and via numerical 
simulation by Bossis & Brady (1987), arises from the random motion of the particles which occurs 
as they tumble over one another in a shear flow. Thus, self-diffusion governs the mixing of labeled 
particles in a sheared suspension at a uniform concentration. In contrast, the gradient or effective 
diffusivity is defined as the ratio of the particle flux resulting from a concentration gradient to the 
magnitude of the gradient. Since the interaction of particles in a sheared suspension may act to 
"push" particles from regions of high concentration to low, the effective diffusivity is not necessarily 
the result of a random walk process, and may be much greater than the coefficient of self-diffusion. 
Leighton & Acrivos (1987a, b) have demonstrated that the shear-induced effective diffusivity is 
nearly an order of magnitude greater than the coefficient of self-diffusion at a concentration of 40% 
by vol. 

Leighton & Acrivos modeled the resuspension process as a balance between the downward flux 
of particles due to sedimentation and an upward flux due to a shear-induced effective diffusion 
along concentration gradients. At steady state this balance resulted in an expansion in the height 
of an initially settled bed whose magnitude was proportional to an integral of the effective 
diffusivity, and also to the Shields parameter • = z/Apga.  The Shields parameter is the ratio of 
viscous forces to gravitational forces, where ~ is the applied shear stress and Apg is the buoyancy 
force. A similar model was employed by Schaflinger et al. (1990) to describe the viscous transport 
of sedimenting spheres in pressure-driven channel flow, and by Davis & Leighton (1987) for 
transport in cross-flow microfiltration devices. These authors obtained reasonable agreement 
between measured suspension heights and integrals of the effective diffusivity measured in 
independent experiments (Leighton & Acrivos 1987b), however no transient experiments were 
carried out. 

In this paper we focus on the dynamic response of a partially resuspended suspension to a step 
change in the applied shear rate. In section 2 we show how the concentration distribution is related 
to the applied shear rate and determine its effect on the apparent viscosity of the suspension. In 
section 3 we describe our experiments, in which we subject a suspension to a step increase and 
decrease in shear rate and measure the resulting transient torque signal. In section 4 we use these 
measurements to determine the effective diffusivity within the plane of shear over a much wider 
range of concentration than previously reported in the literature. We also calculate the hindered 
settling factor, f, for a suspension in the plane of shear. Previous measurements of the hindered 
settling factor have been made for unsheared suspensions, or those settling normal to the plane 
of shear (Lynch 1985). In the final section we summarize our results and compare the measured 
diffusivity with values previously reported in the literature. 

2. THEORY 

2.1. Steady-state analysis 

Consider a suspension of negatively buoyant spheres undergoing shear in the plane Couette flow 
depicted in figure 1. Physically, such a flow may be produced by an annular parallel-plate 
viscometer---essentially a parallel-plate viscometer with the center removed. At steady state the 
concentration distribution of the particles will be governed by a balance between the settling 
velocity of the particles and a shear-induced diffusive flux. In this study the gravitational vector 
is parallel to the velocity gradient. Following Leighton & Acrivos (1986), the volumetric particle 
flux Ny is given by 

Ny = 2 Apga2f~  _ D! I dc~ 
9 #0 dy '  [2] 

where ~b is the volume fraction of particles, f is the hindrance to settling caused by the presence of 
other particles,/~0 is the viscosity of the pure suspending fluid, a is the particle radius, g Ap is the 
buoyancy force and DI~ is the shear-induced effective diffusivity within the plane of shear. At steady 
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Figure 1. The flow field, Rotat ion of the lower annular  plate results in a shear flow. Shear-induced 
dispersion balances sedimentation and produces a steady-state concentration profile. The relative particle 

size indicated its approximately that used in a typical experiment. 
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state, recalling that the effective diffusivity is proportional to the shear rate ~ = z/(#rUo) where Pr 
is the relative viscosity of the suspension, we obtain 

dy* 9 a ' [3] 

where we have rendered y dimensionless with respect to half of the gap height b, and/)il = Dtt/(7 a2) 
is the dimensionless effective diffusivity. Note that the dimensionless concentration gradient is 
inversely proportional to both the particle size to gap height ratio a/b and the Shields parameter 

= (z/Apga). The quantity [(f~b#r)//)ll] was determined in the course of the experiments described 
in the next section (cf. figure 9) to be a weak function of concentration (at least in comparison with 
the viscosity and diffusivity) over the range of concentrations examined here. For sufficiently large 
values of ~ and a/b the concentration variation across the gap will be small, hence the quantity 
[(f~b#r)//Spl ] will be nearly constant in the gap and the concentration profile will be approximately 
linear. In the experiments described in section 3 we examine suspension characteristics as a function 
of ~Pa/b and determine the asymptotic behavior as ~a/b becomes large. 

Of particular importance is the effect of the concentration profile on the observed viscosity. For 
the simple flow considered here, the reciprocal of the observed viscosity is given by 

1 _ 1 r b _1 dy. [4] 
Pr,obs 2b J b #r 

If we expand the function 1/#r in a Taylor series about q5 = ~, the average concentration in the 
gap, we obtain 

~, - + - -  (,~ - 7~) -~ 2 ~,p ~ (,~ _ ~)2 + o [ ( b  - 7~)3]. [5] 

Substituting into [4] and noting that the average of (4 - ~) across the gap is zero, we obtain 

,/'/r I~ 1 = ~/r ( ( A t e )  2) -~- O ( ( A ( ~ ) 3 ) ,  [61 
//r,obs 

where A~b is the deviation from the average concentration and angle brackets denote an average 
over the gap. Thus, for small concentration gradients, the viscosity function (~r [~/~,ob~--1) is 
proportional to the mean square concentration fluctuation. Note that the viscosity function in [6] 
involves the second derivative of 1/,t/r. We found in our experiments that the reciprocal of the 
relative viscosity was very nearly a quadratic function of concentration (cf. figure 6) and that the 
second derivative of the function was positive. This means any fluctuation in concentration across 
the gap results in a decrease in the observed viscosity. Because the reciprocal of the relative viscosity 
was nearly quadratic, neglecting higher-order terms in [6] is a reasonable approximation even for 
relatively large concentration gradients. 

If  we assume that our concentration profile is linear, then 

A ~  = - 5  \ D~, ] ' 

IJMF 17/4--D 
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and hence the mean square concentration deviation is given by 
1 2 

,8, 
\ Dll ] 

For a given applied shear stress z and average concentration ~, the deviation between the observed 
viscosity and that at a uniform concentration is thus given by 

~rl~ l l ( 1 )  1 {~ ( : )  ( _ ~ )  (f~/~r~ } [9] 2 "'02 
= 7 " 

Equation [9] provides a relation between the product of the Shields parameter and particle size and 
the effective diffusivity and hindered settling factor. From steady-state experiments, a plot of this 
vigcosity deviation vs [b/(a~)] 2 will thus yield the ratio of the hindered settling factor f to the 
effective diffusivity, /Sll. To evaluate /5~ independently, however, we will examine the transient 
response of a suspension to a step change in shear. 

2.2. Transient analysis 

When a suspension is subjected to a step increase in shear, we expect the concentration profile 
between the two plates to become more uniform though an increase in the effective diffusivity. 
Because of the observed dependence of viscosity on concentration, this will lead to an increase in 
the measured torque and thus the observed viscosity. The time-dependent concentration distri- 
bution is governed by 

- Apga2fc~ + D I , [10] 
8t 8y #o -~-YY 

which, due to the dependence of viscosity, diffusivity and the hindered settling factor on 
concentration, is highly non-linear. To obtain an analytic solution to [10] we shall limit ourselves 
to cases of small gradients in concentration which result from large values of 7~a/b. With 
this approximation, we assume f and D~l are approximately constant within the gap and [10] 
reduces to 

04~ 024~ 
Ot = Di' 8y 2 [111 

with the no flux boundary conditions N,. = 0 at y = + b. Using [3], the boundary conditions may 
be rewritten as 

dq~ ,"= = - 9  \D!l  ] dy* +1 
\ ~,/ 

where 7~H is the Shields parameter at the higher applied shear and y* = y lb. For a constant applied 
shear rate, changes in the observed viscosity will result in changes in the Shields parameter 7JH and 
hence in the concentration gradient 6. For small concentration gradients, however, the variation 
in the viscosity will be small and hence 7JH and 6 will be approximately constant in time. 

Before application of the step increase in shear the suspension will have the steady-state 
concentration distribution corresponding to the lower applied shear stress. Again, for small 
concentration gradients, we obtain the initial linear profile 

- = 2 [  1 - - ~ ( f ~ # r ' ~ y * = - ( ~ + 6 ) y * ,  [13] 
a \ D , /  

where ko L is the Shields parameter corresponding to the initial shear. The initial concentration 
gradient • + 6 is assumed to be constant across the gap. 
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The ratio of the initial and final concentration gradients is simply the ratio of the applied shear 
rates, i.e. 

6 ))L" 
[14] 

With this relationship, the time-dependent concentration profile is given by 

o0 2~t(-- 1)" . 1~2_2/'~ t* ] ,  
~b (t *, y *) - ~ = y * 6 + ~ 7- s s~Y2-_ 2 sm[(n + ½)ny *]exp[- (n + 7) ,~ "-'11 

.=o  t, n -t- 5) 
[15] 

where t* = t ~ n a 2 / b  z. Noting that tk(t*,y*) - ~ is A~, we may obtain an expression for <(Ate)2> 
by squaring [15] and integral averaging each term from y* = - 1  to y * =  1: 

62 ~--~o 4~t 6 exp[ - (n  t 2 2 " , <(A~b)2> = -3- + _ (n "4- 1)4~4 -~- 7) ~ Dl l t  ] 

~o 20C2 l 2 2 "  + exp[ -2(n  +~) rc Dirt*]; ( n  1 4_4  +7) '~ 
[161 

and hence the time-dependent viscosity is given by 

Jf~r, obs 
- - w l =  

4~ 6 
(n + l)4r# exp[--(n + l, ,~5)2rc2v!l t*] 

+ ,=0 ~ (n +2~21)4~4 exp [ -  2(n + I)27t 2/)ll t*]} [17] 

The relative viscosity at t = 0 is given by 

/~r.obs l, = 0 ~ ~r 3 
[18] 

Substituting [18] into [17] we obtain an expression for the time-dependent change in the 
dimensionless observed viscosity: 

f 
/zr 17~ 1 / 2 

l I (l+!) 
]Xr,obs It = 0 

cx3 

1 2  6 _ 

2 - - + . = o  ( ! ) Z ( l +  n + ~ l )  4exp[- (n+l )znl lS l l t*]n4  

2 6 4 exp[--Z(n +½)2n2/511t* ] ~ . 

J 
[191 

We may determine 0t, 6 and #r[~ from the measured initial and steady-stage viscosities and the 
relationship between ct, 6 and the applied shear rates given by [14]. Note that the transient behavior 
depends only on the diffusivity and the ratio 6/~, e.g. not on the absolute magnitude of the 
calculated concentration gradient. Diffusivities obtained by fitting [19] to transient viscosity 
measurements are thus unaffected by errors in measuring 1//~, and its second derivative. In the limit 
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that 6~or ,~ 1 (a condition present during our experiments) and noting that flr,obs at t = ~ is 
approximately #~15, [19] simplfiies to 

[lr,obs It = 
1 ,z, 

6 
? ,  exp[ -2(n  + ½)21t2D t*], [20] ~r ,  obs ~ 4 

~r,obs It = 0 n = 0 

which is solely a function of the dimensionless diffusivity. This emphasizes the fact that the 
calculation of  the diffusivity depends only on the rate at which the viscosity approaches steady state. 
For the parameters used in our experiments the diffusivity calculated using [20] was only about 
15% less than that calculated using [19]. The corresponding transient in the observed viscosity for 
a step decrease in shear is given in [21]: 

1 

/4.obs ~--~0( ! ) 1 ¢  ~ ) e x p [ _  (n + ½)2rc2/~ t ,  ] - - l - -  4 

2 6 exp[ -2(n  + 5) ~ ~', t*], [21] + 2 4 

where t* has now been rendered dimensionless with YL rather than YH" 
It is interesting to note that the characteristic strains at which the steady-state viscosity is 

achieved for a step increase and decrease in shear are different. Since c~ > 6 (e.g. YH > 7L), we expect 
the third term in [19] to dominate the transient in the observed viscosity for a step increase at large 
times, and the second term in [21] to dominate for a step decrease. Examination of the exponents 
in these terms reveals that the steady-state viscosity should be achieved twice as rapidly (where time 
is normalized by the shear rate) for a step increase in the shear rate as would be found for a step 
decrease. This discrepancy arises from the non-linear dependence of viscosity on the concentration 
profile. 

From the determination of b in these experiments, it is possible to calculate the hindered settling 
coefficient, f,  in the plane of  shear. From [2] and noting at steady state under the low shear rate 
condition that 

d¢ (~ + &) 
- [ 2 2 ]  

dy b ' 

we may obtain an expression for J': 

f _  9 #0"/c /5 (~ + 5) [23] 
- 2 Apgc~ b 

It is important to note that the preceding equations have been derived assuming that the 
concentration variation across the gap is sufficiently small that variations in D ,  f and #r may be 
neglected. This, of course, will be justified in the limit ~ca/b >> 1, since the characteristic 
concentration gradient is inversely proportional to this parameter. We may use our experiments 
to judge the validity of this approximation by calculating/)  a n d f a s  a function of ~La/b and 
examining their asymptotic behavior as ~ca/b becomes large. 

3. E X P E R I M E N T A L  WORK 

3. I. Materials 

Particles used in the experiments consisted of two size ranges of glass spheres and one size of 
polystyrene spheres. The glass spheres were two lots of Class V-A microbeads obtained from Ferro 



DYNAMIC VISCOUS RESUSPENSION 475 

Corp. Cataphote Div., one of size 45-53/~m dia and one size 106-125/~m dia. Both lots were 
reported to be 90% in the listed size range. These spheres were dry sieved in order to increase the 
percentage of  true spheres within each lot and to tighten the size distribution. The diameters of  
100 particles of  each lot size were measured optically. The area-averaged size distributions of the 
large spheres and the small spheres were 110.3 + 13.6 and 46.7 ___ 5.2 #m dia, respectively, where 
the error given is the h r population standard deviation (a measure of the width of the size 
distribution) rather than the error in the mean. Area-averaged distributions were calculated because 
of  the relationship of the particle radius to the diffusivity. 

The glass particles were suspended in an 88 wt% solution of glycerin and water. The density of 
the large spheres was measured via water displacement and found to agree with the reported value 
of  2.42 g/cm 3. The glycerin-water solution had a density of 1.23 g/cm 3, thus the large spheres had 
a density difference of 1.19 g/cm 3. While the density of  the small glass spheres was also reported 
to be 2.42 g/cm 3, it was measured to be 2.34 g/cm 3. The deviation in the densities between the two 
size lots was probably due to the larger volume percentage of air bubbles in the small spheres. The 
viscosity of the suspending fluid was measured as a function of temperature on a CarriMed 
controlled stress rheometer and had a value of 1.62 P at 23.0°C. The temperature dependence of 
the pure fluid viscosity was important for accurate calculation of the hindered settling factor and 
the suspension relative viscosity. 

The polystyrene spheres were reclaimed from the experiments of Leighton & Acrivos 
(1986, 1987b) and had a number-averaged mean diameter of 46.0 + 2.6 #m (Leighton & Acrivos 
1987b). These particles enabled direct comparison with earlier measurements of the diffusivity in 
the plane of shear. The spheres were suspended in the lubricant SF1147, a silicone oil obtained 
from General Electric. The density of the polystyrene spheres were reported to be 1.051 g/cm 3, while 
the SF1147 had a reported density of 0.887 g/cm 3, yielding a density difference of 0.163 g/cm< The 
viscosity of the suspending fluid was also measured as a function of  temperature and had a value 
of 0.63 P at 23.0°C. 

The suspensions were analyzed using an annular parallel-plate viscometer, with 19.05 cm o.d. and 
14.05 cm i.d. yielding an aspect ratio of ( R o -  R~)/R = 0.302. This geometry yielded a shear stress 
which had a radial deviation from that at the average radius R of + 15%. The annular plates were 
mounted on a model R-18 Weissenberg Rheogoniometer equipped with a special clutch which 
allowed for switching between two drive motors operating at different rotational speeds. This clutch 
system resulted in a nearly instantaneous step change in shear rate. 

3.2. Procedure 

Well-mixed suspensions were loaded in the annular parallel-plate viscometer by carefully pouring 
them around the surface of the lower plate. The upper plate was then lowered slowly until it 
contacted the suspension. When contact between the suspension and the upper plate was completed 
over 360 °, the plate was lowered further until the gap between the plates was completely filled. By 
slowly rotating the bottom plate during the lowering of the upper plate and by placing a thin layer 
of Vaseline on the outer and inner edges of the plates, the leakage of suspension was lessened, 
particularly in the glycerin-water systems. Through the rotation of the lower plate, a shear flow 
was produced in the gap between the lower and upper plates. The resultant torque on the upper 
plate was measured through the use of  a transducer and a chart recorder. The observed relative 
viscosity was taken to be the ratio of the torque measured for a suspension to that measured for 
the pure suspending fluid in the same device with corrections for temperature and shear rate 
variations. In this way, most sources of systematic error in relative viscosity measurement were 
eliminated from the experiments. 

Viscous resuspension was studied over a wide range of experimental conditions. Suspensions 
of large glass spheres were studied over concentrations from 20 to 50%. The small glass 
sphere suspensions were limited to studies at 40.9,45.9 and 50.9%, primarily due to the excessively 
long time necessary to approach steady state at lower concentrations. The polystyrene suspensions 
were only examined at 45 and 50% because of leaking problems associated with the low 
viscosities at lower concentrations and the strong ability of the suspending fluid to wet the plate 
surfaces. 
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The gap heights used for each experiment ranged from 0.88 to 2.8 mm. This resulted in particle 
diameter to gap height ratios ranging from 0.020 to 0.093. For larger gaps, the suspensions had 
a tendency to leak out the edges of the plates, therefore most experiments were performed at gaps 
of < 2.5 mm. A typical set of experiments was started at a small gap height and, at completion, 
the upper plate was raised and additional suspension was added to slightly increase the gap height 
for a new set of experiments. This was repeated until the gap heights approached 2.8 mm. 

Suspensions were sheared at rates ranging from 0.6 to 190 s-l, depending on the concentration 
of the suspension. In general, as suspension concentration decreased (and hence the diffusivity as 
well), a higher shear rate was necessary to achieve resuspension. These shear rates gave rise to 
Shields parameters in the range of 6.7-466, which were sufficient to lead to a nearly uniform 
concentration profile at high shear and to avoid settling at low shear. The step changes in shear 
were by factors of 10°'7-1014. These changes were adjusted to keep ~ and 6 within acceptable 
parameter ranges. Several experiments were conducted at considerably lower shear rates (~  ~ 2 
to 7 for the 40% large glass sphere suspensions as opposed to 12-25 for the diffusivity measurement 
experiments) to examine the response of a settled bed to a step change in shear. These experiments 
were not used to estimate either the diffusivity or hindered settling factor as they lay well outside 
the range of parameters where [19] and [21] would be valid. The temperature was monitored 
frequently during each experiment through the use of a digital thermometer with a probe attached 
to the top surface of the upper plate. 

4. RESULTS 

4.1. General observations 

Upon increasing the shear rate imposed on a suspension which is at steady state at lower shear, 
the observed torque signal increased nearly instantaneously (<  0.25 s) to reflect the torque produced 
at the viscosity corresponding to the initial concentration profile. Upon further shearing, the 
concentration within the gap became more uniform, resulting in a gradually increasing torque 
signal. This continued until the suspension reached steady state at the higher shear rate. The 
opposite effect was seen with a step decrease in shear rate. 

The time required to reach steady state generally increased in experiments with smaller particles 
and concentrations. This was the result of the influence of particle radius and concentration on 
the effective diffusivity. In addition, as expected from the model, step decrease experiments took 
much longer than step increase experiments to reach steady state. For instance, in a 45% large glass 
sphere suspension a step increase experiment would reach steady state in approx. 15 s, while a step 
decrease experiment---conducted at an order of magnitude lower shear rate--took on the order of 
5 min. When typical observed viscosity measurements for each type of experiment are plotted vs 
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Figure 2. Comparison of step increase and step decrease 
viscosity variation. Data for a 40% suspension of  
106-125 pm glass spheres: m, step decrease/511 = 0.451; 0 ,  
step increase Dil = 0.488. Note that the characteristic strain 
for a step decrease experiment is greater, as expected from 
theory. The solid lines are [19] and [21] fitted to the data. 
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Figure 3. The measured relative viscosity vs shear rate for 
40% suspensions of 106-125/~m glass spheres at 
a/b = 0.0606. The solid line represents a best fit linear model 

to the data. 
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Figure 5. Relative viscosity vs concentration: ©, measured 
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strain, however (figure 2), the characteristic strain to approach steady state for each type of 
experiment was similar, the remaining difference being a consequence of the non-linear dependence 
of the viscosity on the concentration gradient as described in section 2. Note that the solid curves 
in figure 2 are [19] and [21] fitted to the data, with best fit dimensionless diffusivities differing by 
only 8%. 

4.2. Viscosity analysis 
In order to calculate the diffusivity and hindered settling factor, it was necessary to develop a 

viscosity correlation for the suspensions studied. Shear thinning was present in all suspensions and 
was found to become stronger as the concentration was increased. It was also found to be more 
significant in the large glass sphere suspensions where, for a given change in shear rate, viscosities 
changed approximately twice as much as the viscosities of the small glass sphere suspensions. While 
the polystyrene sphere suspensions and the small glass sphere suspensions had particles of nearly 
equal size, the polystyrene suspensions were much more shear thinning. The shear thinning 
behavior was correlated by the power-law relationship: 

In #r = - n In ~ + const. [24] 

The measured shear thinning behavior of large glass spheres at 40% for a particular value of a/b 
is given in figure 3. The shear thinning exponents n obtained for all suspensions studied are given 
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Figure 7. Mean square concentration deviation vs [b/(a~L)]2 
for 40% suspension of  106-125 #m glass spheres. The line 
of  slope 2 represents theoretical expectations at high applied 
shear. The horizontal line represents the maximum value 
which would be measured for a fully settled layer: ©, step 

decrease in shear; N,  step increase in shear. 
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F1, 106-125/am glass spheres; m, 45-53/am glass spheres; 
(3, 46/am polystyrene spheres. Error bars represent the 

scatter in the experimental observations. 

in figure 4. Surprisingly, the viscosity was not found to be a strong function of the particle radius 
to half gap height ratio a/b, which was varied by changing the gap height for a given suspension. 
While most suspensions became slightly less viscous with decreasing a/b, the 45% large glass sphere 
suspensions exhibited the opposite behavior. The effect of gap height was much weaker than shear 
thinning and no systematic relationship could be determined because of the scatter in the 
experimental results. 

A plot of the relative viscosity of the large glass sphere suspensions as a function of concentration 
at a shear rate of 24 s- t is given in figure 5. Each data point in this figure is the interpolated value 
at each particular concentration of the viscosity using [24] fitted to all viscosity measurements. The 
40% viscosity data point, for example, represents the average of 72 different measurements taken 
at shear rates ranging between ~ 5 and ~ 63 s-~ and a/b ratios ranging between 0.041 and 0.070. 
The viscosity of the large glass sphere suspensions for concentrations in the range 30-50% was 
found to be fit quite well by the modified Eiler equation: 

where the intrinsic viscosity [t/] = 3.18 and the empirical maximum concentration q~e = 0.579. These 
values are quite close to those of 3 and 0.58, respectively, reported by Leighton & Acrivos (1987b) 
for suspensions of 46 #m polystyrene spheres. Similar values were also found by Ogden & Davis 
(1990) for suspensions of 7.3/~m polystyrene latex spheres. 

An important quantity in our calculations is the second derivative with respect to concentration 
of the reciprocal of the relative viscosity. From viscosities measured initially in step decrease 
experiments and at steady state in the step increase experiments for the large glass sphere 
suspensions, we found that 1/~r is very well described by a quadratic function of concentration, 
as seen in figure 6, for a shear rate of 24 s-~. This quadratic relationship appeared to hold at all 
shear rates used in our experiments. The second derivative of 1//~r was found to be 

2 ~?q~2 - 3.57 - 0.165 In ~ [26] 

for suspensions of large glass spheres with concentrations of 30-50%. Note that each of the 5 points 
in figures 5 and 6 represent information derived from 8-72 individual experiments. It is very difficult 
to extract a second derivative from experimental data, and the correlation given by [26] is likely 
to be accurate only at a concentration in the center of the range studied, e.g. at 40%. The use of 
[26] at 30 and 50% is likely to introduce significant errors in the calculation of the hindered settling 
function. Fitting the observed viscosity data to a cubic function of concentration suggests this error 
could be as great as 50%. 
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In the other two suspension systems there was not enough data to obtain a sufficiently accurate 
viscosity correlation to calculate a second derivative. As a consequence, the viscosity function of 
[26] obtained from the large glass sphere suspensions was employed in these systems. Note that 
this renders uncertain the calculations of the hindered settling factor for both the small glass and 
the polystyrene systems but has no effect on the calculated values of the effective diffusivity. 

4.3. Steady-state analysis 

From the measured initial and steady-state viscosities in a step increase experiment, the quantities 
~, 6 and Pr,~ were obtained with the use of [14] and [17]. In general, 0t was larger in experiments 
with smaller concentrations and/or smaller particle radius to gap height ratios and in those 
experiments with larger step changes in shear rate. In all of the suspensions, it was necessary to 
keep ~ + (a + 6) less than the concentration of a settled layer q5 . . . .  and ~ - (~ + 6) > 0, in order 
for the calculated concentration profile to be physically realistic. 

From [9], we can determine the ratio of the hindered settling factor to the effective diffusivity 
by examining the amplitude of the viscosity fluctuation as a function of the low shear Shields 
parameter. Figure 7 shows the mean square concentration deviation, ((Ate)2),  as determined from 
the observed viscosity fluctuation via [6] for the 40% large glass sphere suspensions. As expected 
from [9], this quantity is approximately proportional to [b/(a~PL)] 2 for large ~L. At lower Shields 
parameters, however, the deviation from the average concentration gradually falls away from this 
slope, suggesting that we are nearing experimental conditions where [9] does not apply. Indeed, 
as ~u L approaches zero, the concentration fluctuation approaches a maximum corresponding to a 
fully settled suspension in which all shearing occurs in the pure field above the settled bed. The 
limiting value for a settled bed is given by 

'fl ((A~b) 2) = ~ (~b - ~)2 dy* = ~ ( q ~ m a x  - ~ ) ,  [271 
I 

where q~max is the concentration of the settled layer. This limiting value is given by the horizontal 
line in figure 7 for a settled layer concentration of q~max = 0.62. Calculations of f and/5~ for the 
experiments corresponding to this figure were done only when [b/(a~L)] 2 < 12. 

Because the assumptions leading to [9] are valid in the limit of small concentration variations 
((Aq5) 2) which, in turn, vanish as [b/(a~L)] 2 becomes small, the value of [(f~b#r)/b,] for each 
suspension at a given concentration was determined by plotting [(fq~/~r)//5~l] VS [b/(a~PL)] 2 and 
extrapolating to zero. An example of this for 40% large sphere suspensions is given in figure 8. 
We have plotted [(f~b/~r)//)] vs ~b in figure 9 for all suspensions studied except for the 20% large 
glass spheres. For this suspension the viscosity function [d2(1//~)/O~b2], necessary in calculating 
[(f~b//r)//511], was not determined. 

The error bars in figure 9, as well as those in figures 11 and 13, are a measure of the scatter in 
the data and not a measure of the error in the mean. Because of the large number of individual 
measurements made (more than 60 for the 40% large glass sphere experiments, for example), 
random errors in the extrapolated values of [(f~b/~r)//Sil], /5, and f are negligible. Systematic error, 
such as polydispersity in particle size and shape, error in theory and the determination and use 
of the second deviative with respect to concentration of the reciprocal of the viscosity, is probably 
much larger than the random error but is difficult to quantify. The large quantity of time-dependent 
viscosity data obtained in these experiments is available in the thesis of Chapman (1991). 

4.4. Transient analysis 

The diffusivity was determined from transient viscosity measurements using [19] and [21]. As may 
be seen from examination of figure 2, these equations provided an excellent fit to the experimental 
data. The effective diffusivity measured by means of the model presented in section 2 will 
correspond to the diffusivity at the average concentration ~ only in the limit of small concentration 
variations in the gap. If  we expand the diffusivity in a Taylor series about ~b = ~ we obtain the 
area average diffusivity in the gap to be 

! 2z5 
(/5~1) =/5,  I~ + 2 0q~ 2 ~ ((Aq~)2) + O(((A~b)3))' [28] 
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Figure 10. Measured effective diffusivity vs [b/(a~L)] 2 for 
106-125~m suspensions of glass spheres: O,  20% step 
decrease in shear; O,  20% step increase in shear; O,  40% 

step decrease in shear, II ,  40% step increase in shear. 
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Figure II. Measured effective diffusivity vs concentration: 
I-l, 106-125 # m  glass spheres; I I  45-53 # m  glass spheres; 
O, 4 6 # m  polystyrene spheres. Error bars represent the 

scatter in the experimental observations. 

since, as before, the average of Aq~ across the gap is zero. Thus, the deviation between the measured 
average diffusivity and that corresponding to the average concentration should vanish as ((A~b)2) 
becomes small. From [8] we find that ((Aq~)2) ~ [b/(a~L)]2, thus, as was the case for [(f~b#,)//5~ ], 
we may determine the diffusivity by plotting the measured diffusivity for each experiment as a 
function of [b/(a~L)] 2 and extrapolating to zero. This is shown for the 20 and 40% large glass 
sphere suspensions in figure 10. 

For concentrations of 40-50%, the diffusivities of the large glass spheres slightly increased with 
increasing [b/(a~L)] 2 during step increase experiments and slightly decreased with increasing 
[b/(a~L)] 2 during step decrease experiments. In the 20 and 30% suspensions, however, the 
diffusivities increased strongly in the step decrease experiments. At these concentrations the settling 
velocities of the particles may have contributed to the measured effective diffusivity at the lower 
shear rates (e.g. the first term on the r.h.s, of  [10] was not negligible, as had been assumed). This 
should be less significant for a step increase (as was indeed found experimentally) due to the higher 
diffusivity at the higher applied shear rate. In the small glass sphere suspensions and in the 
polystyrene sphere suspensions, there was very little variation in/5~ with increasing [b/(a~L)] 2 for 
step increase or step decrease experiments. Figure I I shows the measured effective diffusivities 
(extrapolated to [b/(a~L)] 2= 0) as a function of concentration in all systems studied. As expected, 
the diffusivities were very strongly dependent on concentration. In the large glass suspensions, the 
diffusivity increased by two orders of magnitude from a concentration of 20% to a concentration 
of 50%. 

The effect of  the particle diameter to gap height ratio on the effective diffusivity was also 
investigated. The extrapolated value of D! at [b/(a~t.)] 2 = 0 for each value of a/b studied was 
plotted vs a/b for the 40% large glass sphere suspensions. While the diffusivity was observed to 
be a slightly decreasing function of a/b, the scatter in the data and the limited range of a/b used 
in our experiments prevented precise determination of  the functional relation. From the data it 
appears that extrapolating the measured diffusivity to a/b = 0 would increase the value over that 
reported in figure 11 by no more than 10%. 

The diffusivities of the small glass spheres were nearly twice as great as those of the large glass 
spheres at concentrations of 40 and 45%. At a concentration of 50%, however, the diffusivities 
were much closer. It appears that the discrepancies between the diffusivities of the different 
suspensions at 40 and 45% cannot be accounted for by experimental error. The spheres used in 
both the large glass sphere and small glass sphere suspensions were made by the same manufacturer 
and the dimensionless breadth of the particle size distribution in both suspensions were similar, 
thus the discrepancy is somewhat puzzling. 

Other suspension properties such as the importance of van der Waals and electroviscous forces 
depend on the absolute particle size, however, and thus will be different in the two types of 
suspensions. Smart & Leighton (1989) also demonstrated that the absolute magnitude of the surface 
roughness of these sizes of glass spheres was the same, and thus the dimensionless roughness 
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Figure 12. Measured hindered settling factor vs [b/(a~L)] 2 
for 40% suspension of 106-125 urn glass spheres: O, step 

decrease in shear; II, step increase in shear. 
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Figure 13. Measured hindered settling factor vs concen- 
tration: [El, 106-125 #m glass spheres; I I ,  45 53 #m glass 
spheres; ©,  46 #m polystyrene spheres; - - ,  Richardson- 
Zaki correlation; - , correlation used by Leighton & 
Acrivos (198@ Error bars represent the scatter in the 

experimental observations. 

increases as the particle diameter decreases. We may expect that the diffusivity is more sensitive 
to the suspension structure or particle distribution than other suspension properties such as the 
viscosity, since it is proportional to a 2 and hence would be directly affected by any aggregation 
in the suspension. Explanation of the causes of this discrepancy must remain the subject of future 
investigations. 

While the polystyrene spheres were found to exhibit diffusivities much like the similar-sized small 
glass spheres, there was a significant amount of scatter in/51~, particularly in the 50% suspensions. 
It is therefore difficult to make a complete comparison between particle materials. A comparison 
of the diffusivities with previous results found in the literature is presented in the next section. 

From [23] the hindered settling factor f can be determined for each experiment. Similar to the 
diffusivity calculation, the value of f reported for each suspension was found by plotting the 
calculated hindered settling factor for each experiment as a function of [b/(a~L)]  2 and then 
extrapolating to zero as is shown in figure 12 for 40% large glass sphere suspensions. Figure 13 
shows the relationship f o r f a s  a function of ~b for each suspension studied except the 20% large 
glass sphere suspensions. As expected, f i s  a decreasing function of concentration and our results 
show good agreement with the Richardson-Zaki correlation (Davis & Acrivos 1985) for an 
unsheared suspension: 

f = (1 - ~b) 5'. [29] 

While we would expect the hindered settling function to depend on the local particle distribution 
and hence to be different in sheared and unsheared suspensions, our measurements are in 
qualitative agreement with those of Lynch (1985) for sedimentation normal to the plane of 
shear. In that study, it was observed that the hindered settling function increased in dilute 
suspensions as they were sheared in a plane normal to the direction of sedimentation. The difference 
between sheared and unsheared systems decreased with increasing concentration, however, and was 
not measurable for concentrations between 15 and 25%, the highest concentration used in that 
study. 

In their study of viscous resuspension, Leighton & Acrivos (1986) assumed thatf/~r = 1 - q5. This 
is equivalent to assuming that the spheres settle through an effective medium with the density of 
the suspension (rather than the pure fluid) and with a viscosity identical to the suspension shear 
viscosity. As may be seen in figure 13, this substantially underestimates f a t  higher concentrations. 
It must be emphasized that since the value of the hindered settling factor calculated from our 
experiments is proportional to the second derivative of the reciprocal of the relative viscosity, the 
estimated values are quite uncertain. Direct concentration profile measurements are necessary to 
determine if the hindered settling factor differs between sheared and unsheared suspensions, 
however such measurements are beyond current experimental techniques at these concentrations 
and particle sizes. 
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5. DISCUSSION 

It is interesting at this point to discuss the mechanism by which effective diffusion occurs. While 
it has recently been shown that drift may arise from purely hydrodynamic interactions (Koch 1990), 
Leighton & Acrivos (1987b) suggested that the source of particle drift within the plane of shear 
could be described in terms of irreversible interactions between particles as the suspension is 
sheared. According to their model, the presence of gradients in concentration lead to gradients in 
viscosity which, in turn, cause particles undergoing irreversible interactions to be displaced from 
regions of high viscosity to low viscosity and hence from high concentration to low. They, thus, 
suggested that the effective diffusivity scale as 

q~2 d/z 
D, = K,,~-~-~ ~a 2, [30] 

where Kll was expected to be a function of concentration because of the dependence of the geometry 
of particle interactions on suspensions microstructure, and in particular on the degree of 
aggregation. The authors reported K~ to be a moderate function of concentration with a value of 
0.6 at a concentration of 45%, although their experiments lacked sufficient accuracy to test the 
model. 

We may use the results of our large glass sphere experiments to provide a better test of this model. 
Figure 14 shows the correlation [30] with a best fit value of Kll = 0.33 for these suspensions. We 
find from figure 14 that the model adequately describes the behavior of the large glass sphere 
suspensions (I-1) for concentrations between 0.2 < ~b < 0.45, however at higher concentrations the 
diffusivity appears to increase more rapidly than predicted by [30]. The discrepancy is possibly due 
to the formation of large aggregates at higher concentrations, thus increasing the length scale of 
the particle interactions. Further experiments at higher concentrations are necessary to resolve this 
issue, however. 

Figure 14 also compares the diffusivity measured by Leighton & Acrivos (1987b) with those 
reported here. Our measurements are in close agreement at concentrations of 40-50% considering 
the scatter in the earlier experiments. It should be noted that our technique provided much more 
reproducible results because we could control and vary the magnitude of the concentration 
gradient. We were also able to study a wider range of concentrations and perform experiments at 
a larger number of different particle diameter to gap height ratios and shear rates. 

Surprisingly, the correlation proposed by Leighton & Acrivos (1986) in the viscous resuspension 
study ( in figure 14), 

/~ IA~2(1 a_ !,,8.so~ [31] 
3'q" ~ 2 ~ I~ 

does a reasonable job of describing our measurements, even at fairly low concentrations. Equation 
[31] was developed by combining the measured effective diffusivity at high concentrations (Leighton 
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Figure 14. Comparison of the diffusion coefficient vs concentration with the correlation proposed by 
Leighton & Acrivos (1986): I-q, 106-125#m glass spheres; II, 45-53#m glass spheres; (3, 46#m 
polystyrene spheres; + ,  46 #m polystyrene spheres (Leighton & Acrivos 1987b); x, 86 #m polystyrene 
spheres (Leighton & Acrivos 1987b); - - . ,  Leighton & Acrivos (1986) correlation; . . . .  , Leighton & 

Acrivos (1987b) correlation with Kll = 0.33. 
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& Acrivos 1987b) with the measured coefficient of self-diffusion for dilute suspensions (Leighton 
& Acrivos 1987a) into a smooth curve. As a consequence, the correlation involved no measure- 
ments of the effective diffusivity at concentrations < 40%. From figure 14, however, it appears that 
the diffusivity at 50% increases much more rapidly with concentration than the correlation and 
hence [31] is of little use beyond this point. A more accurate correlation cannot be developed until 
we better understand the behavior at concentrations approaching the maximum packing fraction. 
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